The Top DSM Community on the Web

For 1990-1999 Mitsubishi Eclipse, Eagle Talon, Plymouth Laser, and Galant VR-4 Owners. Log in to remove most ads.

Please Support STM Tuned
Please Support STM Tuned

Holset Turbos, PART 9

This site may earn a commission from merchant
affiliate links, including eBay, Amazon, and others.

This site may earn a commission from merchant affiliate links, including eBay, Amazon, and others.

Morphius

DSM Wiseman
1,895
62
Jun 9, 2003
M-Town, Michigan
Continue on...

For more discussion history:
Link to Part 1 :
http://www.dsmtuners.com/forums/showthread.php?t=145691]Holset Turbos - DSM Forums

Link to Part 2:
http://www.dsmtuners.com/forums/showthread.php?t=192083]Holset Turbos, PART 2 - DSM Forums

Link to Part 3:
http://www.dsmtuners.com/forums/turbo-system-tech/274459-holset-turbos-part-3-a.html

Link to Part 4:
http://www.dsmtuners.com/forums/turbo-system-tech/303969-holset-turbos-part-4-a.html

Link to Part 5:
http://www.dsmtuners.com/forums/turbo-system-tech/314629-holset-turbos-part-5-a.html

Link to Part 6:
http://www.dsmtuners.com/forums/turbo-system-tech/327647-holset-turbos-part-6-a.html

Link to Part 7:
http://www.dsmtuners.com/forums/turbo-system-tech/353498-holset-turbos-part-7-a.html

Link to Part 8:
http://www.dsmtuners.com/forums/turbo-system-tech/371627-holset-turbos-part-8-a.html

Link to Part 9:
http://www.dsmtuners.com/forums/turbo-system-tech/436168-holset-turbos-part-9-a.html


For Holset FAQ: (growing document and not finished)
Link to FAQ:
http://www.dsmtuners.com/forums/turbo-system-tech/362444-holset-turbos-faq.html


For in vehicle results:
Link to Results Only:
http://www.dsmtuners.com/forums/tur...-results-only-complete-installed-systems.html

Link to HX-52 setup;
http://www.dsmtuners.com/forums/turbo-system-tech/307988-holset-volvo-hx-52-dyno-sheets.html


For more specific component discussion:
Link to Holset Part #'s:
http://www.dsmtuners.com/forums/turbo-system-tech/312186-holset-part-thread-only.html

Link to Holset oil feed discussion:
http://www.dsmtuners.com/forums/turbo-system-tech/244467-holset-hx-35-oiling.html
http://www.dsmtuners.com/forums/tur...turbo-users-your-oil-drain-may-too-small.html

Link to Fake Holset Info:
http://www.dsmtuners.com/forums/newbie-forum/306635-counterfeit-holset-turbos.html


Summary provided by wiseman, Dsm-onster:
HX35:

The 8blade hx35 has a 56mm compressor inducer. This is found on 1995-1998 cummins manual pickups. The compressor flows 52 lb/min according to the compressor map. The bolton BEP housing (0.55 a/r) is enough to push the limit of the compressor. There's several 500whp 8blade hx35 cars out there with the bolt on housing. It reaches 20+psi by 3500rpms in 3rd with 272 cams. Smaller cams would equal a faster spool speed in most cases.

The 7blade hx35 has a 56mm compressor inducer. This is found on the 1999-2002 cummins manual pickups. The compressor flows 60lb/min according to the compressor map and logged results from a member here. The bolton BEP housing with the hx35 turbine wheel do not SEAM to have enough flow to really reach the potential of 60lb/min. But many have logged over 50lb/min so far and seen 500whp. The stock hx35 12cm^2 twinscroll turbine housing is a t3 flange housing. This mated to a NON-divided runner manifold has produced a 132mph trap speed with a full weight 1g AWD. This is about 600whp. So the flow is there with the stock housing if you use a non-divided manifold. The spool speed of the 7blade hx35 is similar to the 8blade hx35 with 20+ psi by 3500rpms in the bolton housing and by 4000rpms with the stock housing with a non-divided manifold.

HY35:

The hy35 has a smaller turbine wheel than the hx35. And, it has a turbine housing connection that does not allow for a bolton housing to be used. It does not have a divided housing so any t3 manifold can be used effectively with this turbo. It has the same compressor as the 7blade hx35. We don't know if te hy35 turbine wheel and housing is enough to reache the 60lb/min potential of the 56mm 7blade compressor. Some one try it out already!!! :) It should at least be a faster spooling viable option to the full t3/t4 50-trim.

H1C/WH1C:

In 1994, there was the Wh1c which has pretty much the identical compressor as the hx35 but with a Vband compressor cover. The turbine wheel is the same. It will bolt into the BEP bolton hx35 turbine housing. It has 4 bolts at the housing instead of 6. So you will need to buy 2 more bolts and use 6 washers cut to make a flat side. Honestly, I just used bolts that were cut a little short and the bolt head was wide enough to pull the chra to the turbine housing. No sealing issues. Since the Wh1c is for all practical purposes an 8blade hx35 the spool and flow is the same too.

I have the big h1c. It comes on the INTERCOOLED 1991-1993 cummins pickups. It has the webbing for MWE but no groove cut like the hx35/wh1c has. This turbo I term the big h1c because it has a 54mm compressor inducer and same exducer than the 8blade hx35/Wh1c. The other h1c is the small h1c found on the NON-intercooled cummins pickups. This has a 50mm inducer but only 7blades and has no webbing for MWE. Less blades helps flow, but so does a larger inducer diameter. The most whp ever recorded on a gas 4cylinder with the small h1c was done on a KA24 nissan: 411whp. Since the big h1c has a 4mm larger inducer and the same turbine wheel as the hx35, it is safe to say that it flows enough for between 411whp and 500whp. The diesel sources state that it flows SLIGHTLY less than the early hx35. So 4lb/min less than the 8blade hx35 puts the flow of the big h1c at 48-49lb/min right where a 50-trim or 20g is. The small bep housing is all that's needed to get the most from the compressor and the spool speed is 20+psi by 3500rpms.

HX35-40 hybrid:

Keeping the long tradition of the marriage of sportcompact and hybrid turbos, there is the hx35 turbine and the hx40 compressor. It is strongly recommended to use the large bep turbine housing or the stock hx35 turbine housing with an non-divided t3 manifold for this turbo. The small bep housing around a t31 size hx35 turbine wheel is probably not enough to merit any of the hx40 compressor wheel upgrades. 20+ psi by 4000rpms can be seen in the hx35/40 with the hx35 12cm^2 turbine housing with a non-divided t3 manifold. With the large bep housing, spool times are to be determined. But likely similar.

HX40:

The 8blade hx40 has a 58mm inducer and flows about the same as a 60-1 (around 60lb/min) with ALOT better high boost efficiency and spool speed. It is the most common hx40 out there. The small bep housing with the hx40 turbine wheel is plenty to reach the full potential of the 60lb/min 8blade hx40 compressor. 20+ psi by 4100rpms with 272s.

The 7 and 6 blade hx40 is called the super40 and has the 60mm compressor inducer. This compressor flows around 69lb/min. You can get this wheel in billet style (think HTA). The non-billet wheel spools as fast as the 8blade hx40 in the bolton bep housing and has done 653whp at 40psi per the holset results only thread. Billet should spool even faster. The t3 .70 a/r BEP housing slows spool about 400rpms. But reports show a significant gain in flow per psi. So expect more power at lower boost with that turbine housing.

H1E/WH1E:

The Wh1e is like it's little brother the Wh1c. It mirrors the hx40 8blade in every way except that it has a v-band compressor cover and a 4bolt chra-turbinehousing pattern. It will consequently bolt into the hx40 bep bolton turbine housing and this is plenty of flow to max out its 60lb/min compressor.

The h1e is like it's little brother the h1c. There are different size compressors. . . BUT there are also different size turbine wheels too. Check measurements before buying this turbo if you plan on running a BEP turbine housing. There are lower flowing compressors than the 58mm 8blade that are out there. So this turbo may not flow any more than an hx35 if get the wrong one. You need at least a 58mm compressor inducer for this to be a worthwhile turbo vs the proven hx35 or 8blade hx40.

HX52:

This is a big sucker. It is commonly found on the Volvo Semis and usually has a billet compressor wheel. It flows 88lb/min. There is no bolt on housing for it. If you want a bolton housing for this turbo, then you don't want this turbo. In fact if you want a t3 flange turbine housing for this turbo, then you don't want this turbo. You DO want this turbo if you're looking at a gt4294r or gt4202r. The turbine inlet is slightly different than a t4 bolt pattern. You can still get the t4 manifold to work just fine by enlarging the bolt holes.

Misc.:

  • Holset's don't spool slow. They spool faster than their garrett or mitsubishi counterparts. Diesel exhaust is cold and slow moving.
  • The holset turbine wheel is a work of art. It has been shown to flow very well in a very small turbine housing. For example the hx40 turbine wheel in the small .55 ar bep bolton housing flows as much as a garrett gt35r turbine wheel in a larger .63 ar garrett t3 turbine housing. The hx40 with this configuration spools about 500rpms faster! You can upgrade to the .70 a/r BEP t3 turbine housing and have the same or slightly faster spool speed as the above gt35r with ALOT more flow per psi and consequently more horsepower per psi. This makes for VERY good pumpgas numbers.
  • Holset patented map width enhancement. They do not have extended tip technology, but there compressors show more efficiency than their garrett or mitsubishi counterpart.
  • They have superback technology witch leads to VERY, VERY durable compressors. The are designed to be overworked and underpaid.
  • There are discrepancies all over the web concerning the compressor maps. Take what you hear/read with a grain of salt and a shot of tequila, and the worm.
  • The holset is fine with stock 4g63 oil pressure from the oil filter housing. If you have no b shafts, you'll need a restrictor. The drain line is a garret bolt pattern. The feed line is different for different turbos.



Summary of compressor/turbine combinations provided by mod/wiseman, JusMX141:

HX35 Compressors:
50mm / 78mm 7-blade
52mm / 78mm 7-blade
54mm / 78mm 7-blade
54mm / 83mm 8-blade
56mm / 83mm 8-blade

Turbine: 70mm / 60mm


HX40:Compressors:

56mm / 86mm 6-blade (cast & billet)
60mm / 86mm 6-blade (cast & billet)
60mm / 86mm 7-blade (cast & billet)
58mm / 83mm 8-blade (cast & billet)
60mm / 83mm 8-blade

Turbine: 76mm / 64mm
 
Last edited:
Place holder 4


OK, now post.
 
19BLACKGST98 Great find!! My IC piping is already 2.5".. Chances are you'll have to go with some kind of restalled converter.. My buddy has been having issues with his torque converter all of last season into this season yet.. However that isnt pertinent to a holset thread so we'll leave it out! haha

Im not too worried about trying to get better spool, I knew I would sacrifice some spool by going away from the 20g.. What Im getting is pretty decent, to me anyways with what I have.

.
I hope your gonna be down in the dells for automotions this weekend. ill be driving my redjack WH1C holset build down there after it gets tuned this week.

I will bet there.. Hopefully my car quite being a friggin Jew.. Spent all day messing with it because anything that could go wrong did.. I think I got it all figured out though.. I still need to wire in some fans so I quit heating up at stoplights.. Ill be rolling up with /J, Kp115 and Mr Peepers, among a couple other locals.. Hope to see you there.
 

I will bet there.. Hopefully my car quite being a friggin Jew.. Spent all day messing with it because anything that could go wrong did.. I think I got it all figured out though.. I still need to wire in some fans so I quit heating up at stoplights.. Ill be rolling up with /J, Kp115 and Mr Peepers, among a couple other locals.. Hope to see you there.


I know what you mean by having a dumn car. I just spent a good portion of the day wondering why my timing was so far off. Turns out my tps had to much of a scaling in link and it was not alowing the car to enter closed loop. you to.
 
If it comes down to me needing a restall I will just have a manifold built...im calling a few places today to see how much its gonna cost. I like the fact that the holsets are cheap but the initial setup can be a pain LOL.
 
Can someone go though that Holset description and put compressor inducer and exducer, and turbine inducer and exducer for every turbo? If I have to make a chart myself I will, that junk is not easy to find, let alone all in one spot!
 
Can someone go though that Holset description and put compressor inducer and exducer, and turbine inducer and exducer for every turbo? If I have to make a chart myself I will, that junk is not easy to find, let alone all in one spot!

If you want to make one, you can let me know when it's done. I'll send you my email address and you can send it to me. Then I'll add it with subnote you helped put the chart together.
 
This is a very general list of compressors and turbines that I've personally witnessed in use- it doesn't include every wheel in existence, nor does it include the H1 turbos.

HX35

Compressors:

50mm / 78mm 7-blade
52mm / 78mm 7-blade
54mm / 78mm 7-blade
54mm / 83mm 8-blade
56mm / 83mm 8-blade

Turbine: 70mm / 60mm


HX40:

Compressors:

56mm / 86mm 6-blade (cast & billet)
60mm / 86mm 6-blade (cast & billet)
60mm / 86mm 7-blade (cast & billet)
58mm / 83mm 8-blade (cast & billet)
60mm / 83mm 8-blade

Turbine: 76mm / 64mm
 
This is a very general list of compressors and turbines that I've personally witnessed in use- it doesn't include every wheel in existence, nor does it include the H1 turbos.

HX35

Compressors:

50mm / 78mm 7-blade
52mm / 78mm 7-blade
54mm / 78mm 7-blade
54mm / 83mm 8-blade
56mm / 83mm 8-blade

Turbine: 70mm / 60mm


HX40:

Compressors:

56mm / 86mm 6-blade (cast & billet)
60mm / 86mm 6-blade (cast & billet)
60mm / 86mm 7-blade (cast & billet)
58mm / 83mm 8-blade (cast & billet)
60mm / 83mm 8-blade

Turbine: 76mm / 64mm

Added this to the summary at the beginning.
 
Updated all the threads with the above info and updated links. (ie: Info provided in the first and last post of each thread)
 
I have tested my 6blade 56mm billet with a 7blade 60mm hx40 , for some weird reasons im getting higher power on the dyno , on dyno dynamics im getting 354whp at 21psi , the 7blade was making 310whp.
 
7-blade may want more boost to make airflow, I don't really have accurate compressor maps for either wheel.

Wheels with steeper trim (lower trim number...or small inducer, large exducer) are generally geared toward making airflow at lower boost levels, and vice versa. This, along with blade count and aero design, is why the 54mm/83mm 8-blade HX35 doesn't make as much high-boost airflow as a 54mm / 78mm 7-blade HX35....yet the 8-blade tends to make more airflow at lower boost levels than the 7-blade.
 
so jus you're saying for lower boost applications an 8 blade hx 40 might actually be more beneficial then a 6 blade. And i've been reading a lot of reading on the holset discussion threads, but there seems to be some debate on spool times between the 6,7, and 8 blade holsets. Some are claiming almost identical spool times between an 8 blade and a 6 blade which makes no sense to me. Shouldn't the 8 blade be considerably faster then a 6 blade but just produce less air flow up top? and wouldn't a 7 blade just be a happy medium between the two? I have been reading a lot lately but there still seems to be a lot of talk out there but haven't seen too many logs with direct comparisons between the 3 different blade setups (yes i know there are different inducer and exducer sizes)
 
I think the turbine has more to do with spool than the physical size of the compressor, hence the reason you're seeing guys reporting similar spool times between all available compressors.

Keep in mind that while the 8-blade 58mm/83mm would be the smallest overall HX40 compressor, the 56mm/86mm 6-blade also has two less fins...so it's likely that the weight of the two wheels would even out. I have no hard data to back this up as I've never compared the weight of these two wheels, but it may happen in the future.

The 7-blade is the newest revision and is thought to be the highest-producing wheel, much like the 7-blade 54mm/78mm HX35 wheel stomps even the larger 56mm/83mm HX35 wheel in airflow production.
 
Hey guys, I am just about done installing a twin scroll 7 blade hx35 setup on the car. I was doing a boost leak test and I have a pretty good leak coming from the back of the compressor cover. Now, on this turbo there was a locating pin on the turbo and a groove in the compressor cover where it went. I grinded the locating pin off so I could clock the compressor cover where I wanted it. I think this is where the problem is. The snap ring that holds the cover on seemed to cover pretty much all of the groove, but I tried to put some Jb weld on it last night and it doesnt leak at that spot anymore however it is still leaking boost. It seems to have just moved the leak over some.

So now I pulled the turbo again and pulled the compressor cover off, and Im thinking of just filling this groove in with some jb weld and molding it so it was like it wasnt there. Any other suggestions? Also there isnt a large o-ring or anything that is on the holset is there? I just ask because on my last mhi turbo the compressor cover had like a big o-ring that went around it.

<a href="http://s671.photobucket.com/albums/vv71/turbotalon4/?action=view&amp;current=001.jpg" target="_blank"><img src="http://i671.photobucket.com/albums/vv71/turbotalon4/001.jpg" border="0" alt="Photobucket"></a>
 
Thanks for the reply. That stuff looks interesting. Yea sealing around the whole snap ring would probably fix the problem, but would I be able to remove the snap ring if I needed to? Im thinking even if that locating pin was in there, it didnt fit that tight. How do they seal up the compressor cover in its stock form? While I had it out, I cleaned up everything as best I could, like all the grooves in the cover and on the backing plate on the turbo.
 
RTVed my Comp cover also and havn't had any problems with it....just mark a line so you will know where it will need to be clocked then slap it on.
 
Support Vendors who Support the DSM Community
Boosted Fabrication ECM Tuning ExtremePSI Fuel Injector Clinic Innovation Products Jacks Transmissions JNZ Tuning Kiggly Racing Morrison Fabrications MyMitsubishiStore.com RixRacing RockAuto RTM Racing STM Tuned

Latest posts

Build Thread Updates

Vendor Updates

Latest Classifieds

Back
Top